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Presidential Candidates' Twitter Use and the Linkage

Pattern of Twitter users in the 2012 Presidential

Election

Byung S. Lee’

ABSTRACT

The study aimed to examine how the five presidential candidates -
Barack Obama, Mitt Romney, Rick Santorum, Newt Gingrich, and Ron
Paul - used Twitter in their 2012 presidential election campaigns and
how Twitter users received information from the candidates and
shared information with other Twitter users. Among 30 million Twitter
users who followed these five candidates, most individuals followed
either Obama or one or multiple Republican candidates, but rarely
followed across the party line. To find which model explains Twitter
users' following patterns better, the author examined the two-step flow
model and the network model.

Based on analysis of randomly selected 180 Twitter users who
followed any of the five candidates, this study found that their
Twitter activities fitted the network model, in which users shared
information with each other beyond directly getting tweets from their
favored candidate. In this network model, some of the users seemed
to emerge as opinion leaders by issuing plenty of tweets and having
more followers than those they follow, also known as one-way friends.

* The School of Communications, Elon University. This research was supported
in part by two summer research grants from Elon University and Elon
University’s Turnage Family Innovation and Creativity Fund for the Study of
Political Communication. The author thanks three anonymous reviewers for
their constructive comments that helped strengthen this study.
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The author also downloaded the Twitter profile pages of the five
candidates and all their tweets from when they set up their Twitter
account through March 2012. To content analyze the tweets of the
candidates, the author randomly selected 500 tweets from the five
candidates, 100 from each candidate, and analyzed them to find
emerging 11 categories, which covered mentioning of their
performance and ideas, criticism of their opponents, solicitation, thanks
to voters, personal-side stories, and event reminders. The five
candidates heavily used Twitter as a hook to hashtags and http links
that would provide more detailed information for followers. They still
used Twitter mostly as a textual communication tool, but they slowly
made a move to visuals. In terms of message content, Republican
candidates heavily cited others, for example, the mass media, to
describe their ideas and performance and to criticize their opponents.
But Obama didn't seem to rely on external sources for the same
purposes. This study used all 30 million Twitter users to find which
candidate they followed. But it used a small size of Twitter users and
tweets for other analyses. Future studies are suggested to analyze
larger samples for more accurate results.

Key Words: Twitter use, linkage pattern, 2012 U.S. presidential
election, five candidates, the network model

I. Introduction

The use of Twitter has brought new kinds of democracy around the
world. We witnessed the "Arab Spring" in the Middle East and
Northern Africa. In the U.S., people ages 12 to 34 are spending less
time in front of TV sets than computers, according to research by
Nielsen, a company that tracks media use (Stelter, 2012). This young
generation has increasingly relied on Twitter to gather information and
express itself. Twitter becomes more powerful as more people join the

social media platform. In the 2012 election year, there was a voting
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age population of 221,925,820, among whom, only 130,306,739 voted, a
58.7% voting rate. On the other hand, there were 30,525,150 people
who followed the Twitter accounts of five presidential candidatesl) in
2012. That number accounted for 13.8% of the voting age population,
or 23.4% of real voters (McDonald, 2013).

In response to this new trend, politicians in the U.S. adopted Twitter
to reach millions of Twitter users, 10 times as many as in the 2008
campaign. This hefty increase was due to different reasons: Politicians
want to respond to or interact with Twitter users and monitor
interactions of followers, especially reporters. The 2008 presidential
election experienced a 24/7 news cycle, while the 2012 election
witnessed a 24-second news cycle (Parker, 2012).

When there was neither the Internet nor social network systems,
such as Twitter or Facebook, politicians used the traditional mass
media. According to the two-step flow theory of communication
model, information first flows from the mass media to opinion leaders,
who then passes it on to the wider general public. This paper
examined whether this two-step flow is working in cyberspace politics,
especially on Twitter, which has been used to mobilize young people
for democracy in the United States.

This paper examined how five politicians in the 2012 presidential
election - Barack Obama, Mitt Romney, Rick Santorum, Newt Gingrich,
and Ron Paul - communicated in a new media environment, especially
using Twitter. It analyzed what types of Twitter features the politicians
used to get out their messages in a 24-second news cycle and what

kind of Twitter messages they posted.

1) Five accounts are @RickSantorum, @newtgingrich, @RonPaul, @BarackObama,
and @MittRomney.
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This study also examined the following questions: How did citizens
receive information in the Twitter network? Did other Twitter users
intervene between a presidential candidate's Twitter message and the
audience’s reaction to that message? Did they subscribe to one
politician, multiple politicians from the same party, or even politicians

across the party line?

II. Literature Review

One concern about Twitter is whether it acts as the echo chamber,
in which people hear the same sound repeatedly. If Twitter cannot
offer a channel through which people access ideas and information
from multiple sources, it may hamper democracy rather than help it.

The following literature review focused on two communication
models — the two-step flow model and the network model. During the
decades between the two world wars, scholars believed the mass
media had a strong influence on the public. This hypodermic needle
model was dominant until Lazarsfeld and others suggested the
two-step flow theory (Severin & Tankard, 2001; Baran & Davis, 2012).

According to the two-step flow theory, mass media messages go to
the public through opinion leaders. Lazarsfeld, et al. tried to verify the
hypodermic model of powerful media effects in their 1940 study of
presidential election. Contrary to their expectations, they found that
radio and print mass media had relatively minor effect on people's
voting in the U.S. presidential election than personal contacts
(Lazarsfeld & Menzel, 1963; Lazarsfeld, Berelson, & Gaudet, 1968). The

power of interpersonal communication was later found also in
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non-political areas, such as marketing, fashion, movie viewing, and
other areas (Katz & Lazarsfeld, 2006; Lazarsfeld & Menzel, 1963;
Merton, 1968).

The power of interpersonal communication reappeared in different
shades. Gladwell (2002) found that ideas, products, messages, and
behaviors "spread just like viruses do" (p. 7) if they are sticky enough
to attract opinion leaders, what the Gladwell called Connectors
(sociable person), Mavens (messenger), or Salespeople (persuader).

One year later, Berry (2003) explained the importance of the role of
the person-to-person channel of word of mouth with influentials at the
center of the channel. The influentials gather information from multiple
sources, communicate with ordinary people using multiple channels,
and spread information among them. As the Internet disintegrated the
mass market, the influentials, who are active socially and politically,
would influence others more than ever through their activities.

When ordinary people need more sophisticated knowledge, such as
medical, financing, other consulting type of information, they try to go
beyond their network of families and friends to other influentials with
expertise (p. 6). Berry estimated that influentials make up about 10
percent of the U.S. adult population (p. 1).

However, the two-step flow hypothesis was soon criticized by many
subsequent studies. For example, Westley (1971) cited several studies
that supported that the mass media directly spread major news stories
to a far greater extent than intermediary opinion leaders. Trodahl
(1960) also argued that the two-step flow hypothesis explains minimum
effects of mass media on people's attitudes and behavior, but the mass
media are effective in making people becoming aware of major news

events. So Trodahl (1960) suggested a one-step flow of communication
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directly from the mass media to people in informing them, and a
two-step model in swaying their opinions, attitudes, and behavior.
Trodahl reasoned that opinion followers would ask opinion leaders for
advice to recover from their cognitive imbalance after they are exposed
to views from mass media that are inconsistent with their own views.
Another study characterized the relationship of opinion followers with
opinions leaders as opinion sharing rather than opinion seeking
(Trodahl & Dam, 1965), which seems to be more appropriate in the
Internet era than ever before because opinion leaders have a capacity
to be their own publisher and actively share information with others
rather than passively being sought after by others.

With the advent of the Internet, communication environments have
changed drastically. New socio-technological conditions, such as '"the
continued detachment of individuals from the group-based society, and
the increased capacity of consumers to choose from a multitude of

media channels (many of which enable user-produced content)," require
new kind of theory and research (Bennett & Iyengar, 2008). Chaffee
and Metzger (2001) rejected "mass society theory and . . . the notion
of a passive, atomized audience" (p. 370). They wrote that new media
environments, where anybody can serve as a publisher, provide
ordinary individuals with opportunities for communication with others,
which were only available to elites and gatekeepers in the past.

To accommodate this need, social network analysis can be used as a
model. In the network analysis model, actors are viewed as interacting
with each other, and resources, either material or nonmaterial, transfer
through their ties. This model has been fruitful in analyzing many

relational issues in social and behavioral science areas (Wasserman &

Katherine, 1994). Most of network analysis was conducted using
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survey-type field studies, but experimental and quasi-experimental
designs can be used, too (Borgatti, Everett, & Johnson, 2013). The
advancement of Internet and social media networks allow researchers
to access network model data in real time since computer technology
can be used to collect innumerable data about users and computer
systems. Studies on social media networks can be done to trace email
communication; map message boards and email listserv groups;
analyze activities on Twitter, Facebook Flickr, and YouTube; or
describe patterns in WWW hyperlinks or Wiki networks (Hansen,
Shneiderman, & Smith, 2011).

A few recent studies found that the pattern of Twitter activities
seems to fit the two-step communication model over the network
model. Kwak, Lee, Park, and Moon (2011) found that Twitter is a
news media instead of a social network when they analyzed the entire
Twittersphere, which allowed them to access 41.7 million user profiles
and 10 million tweets. They found "Twitter shows a lower level of
reciprocity; 77.9% of user pairs with any link between them are
connected one-way, and only 221% have reciprocal relationship
between them." These authors conjectured that "for these users Twitter
is rather a source of information than a social network site" (p. 593).

Wu, Hofman, Mason, and Watts (2011) found that the top ten
most-followed  Twitter users are mnot corporations or media
organizations, but mostly celebrities. Even though Twitter eroded
traditional media power with its 140-letter platform, they found
considerable support for the two-step flow hypothesis on Twitter.

Regarding how to use Twitter effectively, many different theories
were suggested. Any one can use social media easily like playing a

guitar, but producing impressive tunes that would attract people's
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attention would take "finesse, talent, sensitivity and damn hard work"
(Amerland, p. 191). Amerland emphasizes "storytelling" beyond just
"conversing" as an element to bring a true interactivity with the
audience. Powerful stories can be narrated by telling synergetic,
entertaining,  differentiating, and focused stories (p. 109-118).
Additionally, Schaefer (2012) emphasized that powerful Twitter users
have to provide meaningful and beneficial content for followers and
additional links that will provide further detailed information after the
first hook.

For this study, three research questions were raised.

RQ 1: Did people acquire information about 2012 presidential
politics from one candidate or multiple candidates?

RQ 2: Did the structure of Twitter communication follow the
two-step flow model or the network model?

RQ 3: How did the five presidential candidates effectively use

Twitter?

III. Method

To see how the five presidential candidates used Twitter, the author
downloaded their Twitter profile pages and all their tweets from when
they set up their Twitter account to the day when their tweets were
downloaded by the author, sometime between March 11 and March
17, 2012. The profile page shows the tweet count, the number of
followers, and the number of following. Their tweets were analyzed to

see what Twitter features they used; whether the political candidates
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used normal tweets, replies, retweets, or a mix of replies and retweets;
or whether a tweet has a photo, video, or other media.

To content analyze the candidates' tweets, the author randomly
selected 500 tweets from the five candidates, 100 from each candidate,
and analyzed them to find emerging 11 categories. When the content
was not clear, linked visuals, such as photos, videos, or media, were
analyzed, along with the content referred to by an accompanying http
address. Another coder categorized 100 tweets, and the inter-coder
reliability was 79%. To refine the category, the two discussed
discrepancies in their classifications and came up with more
streamlined 11 categories: A) Performance described by self; B)
Performance described by others; C) Ideas described by self; D) Ideas
described by others; E) Criticism of opponents by self; F) Criticism of
opponents by others; G) Solicitation; H) Thanks; 1) Personal messages;

J) Reminders for constituents; K) Miscellaneous messages.

e Category A and B are about a candidate’s performance, activities
or events. If a candidate mentions what he has done in tweet
messages, it belongs to Category A. If a tweet mentions other
media that described the past or future activities of a candidate,
this belongs to Category B. For example, “Tune in at 8:00 P.M.
tonight for the #CNNDebate (@ CNN Presidential Debate w/ 8
others)” is an example of Category B.

® Category C and D use Twitter to describe a candidate’s ideas or
invisible quality. If a candidate directly describes himself, it
belongs to Category C. On the other hand, if a candidate quotes
others to prove a point or stance, this tweet belongs to category

D.
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e Category E and F are used to attack an opponent. When a
candidate directly makes an attack, it belongs to Category E. If a
candidate relies on others for any attack, such as newspaper
articles, op-ed, TV programs, or other writers, it belongs to
Category F.

e Category G is about requesting people to participate beyond just
watching TV or reading newspaper articles (the latter are covered
by categories B, D, and F). Its examples include any mention of
donations, soliciting volunteers, or voting.

e Category H is used to thank people, who have either worked for
the candidate or for the country. For example, when a candidate
expresses an appreciation of their service to soldiers, this tweet
belongs to Category H.

e Category I is used to reveal the candidate’s personal side, not
related to the political campaign, such as attending sports games
or personal meetings.

e Category ] is used to remind people of important events or day,
such as 270 days to the election or the Senate’s vote on important
matters.

e Category K is to cover all remaining tweets that cannot be

classified by categories A to J.

To see how people follow the five presidential candidates through
Twitter, the author downloaded the Twitter ids (unique account
names) of all followers: about 26 million Obama followers and about 4
million Republican candidate followers. All these followers were
checked to see their following pattern, or to see whether they follow

multiple candidates, even across the party line.
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Additionally, this study analyzed the relationship among followers to
check which information dissemination model emerges in the social
network era: the two-step communication model or the network model.
Rather than analyzing all these followers, 180 followers were randomly

selected for analysis.

IV. Findings and analysis

Online social network analysis can be done in two ways: 1)
structural analysis based on linkage behavior of network participants

and 2) analysis of Twitter content (Aggarwal, Chap. 1, 2011).

1. Structural analysis

This study analyzed the tweets that had been posted by the five

politicians.

1) The patterns by which Twitter users follow politicians:

Using Twitter APIs (application program interfaces) the author wrote,
he downloaded the ids of all Twitter users who continue to follow the
five politicians between November 14 and November 17, 2012, several
days after Election Day of November 6, 2012.

Out of 25,936,346 Obama followers, 24,799,970 (95.6%) followed only
Obama; and the rest, 1,136,376 (4.4%), also followed the four

Republican candidates as shown in Figure 1.

<Figure 1> Obama followers: the pattern of following other candidates
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Among those who followed only Republican candidates, many
followed at least one other Republican candidate, as shown in Figure
2. For example, 41% of Paul's followers followed at least another
Republican candidate. Its ratio varied among other candidates: 22% for
Gingrich; 22% for Romney; and 58% for Santorum. This finding
suggests that Twitter may contribute to dividing the society since most
followers get information mostly from one candidate or just from

candidates from the same party.

<Figure 2> Republican followers: the pattern of following other Republican
candidates
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2) Two-step flow model or network model: This study also
looked at whether political followers subscribed to only one politician
regardless of parties, multiple politicians in the case of the Republic
party, or politicians across the party line. The implication of this result
will be critical. If the first model is prevalent, it may accelerate the
fragmentation of society. If the last model is prevalent, on the other
hand, Twitter may contribute to exposing followers to diverse ideas
and facilitate democracy.

Another question was asked to see whether Twitter communication

follows the two-step flow model or the network model. In the former
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model, ordinary people may get information directly from the original
sources, such as candidates, but they don't have enough time to
closely follow a trail of information and expertise to fully interpret
them. They need to rely on opinion leaders for additional information
and/or interpretation of any information. In the network model, users
subscribe to the original sources of information, and exchange or share
information and its interpretation with other users.

The first model in Figure 3 represents the two-step model, in which
opinion leaders with big circles follow a politician and pass on the
messages to their followers, who are marked by small circles. Users, of
course, follow a candidate, but follow opinion leaders for further
information or interpretation of any relevant information. In the
network model, the second model in Figure 3, people directly follow
their favored politicians without any mediation, and they share
information or interpretations of messages among other users without

dominant opinion leaders.
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<Figure 3> The two-step flow model vs. the network model

The Two-step Flow Model The Network Model

A line and an arrow show A line and an arrow show
who follows whom. The simple | who follows whom as in the
line indicates how a user follows | two-step flow model. In the
a candidate, while the arrow | network model, the number of
indicates how a wuser follows |users who follow other users
another user. In this model, the | would be similar to the number
number of users who follow will | of who are followed since users
be far larger than the number of | share information with each
people who are followed, opinion | other without any dominant

leaders. opinion leaders, who have many
followers without much
following.

To test which model fits the data, the author randomly selected 180
Twitter users out of all users who follow any of the five candidates.
The 180 users were composed of various groups: The first five groups
who followed only one of the five candidates — Obama, Paul, Gingrich,
Romney, and Santorum each; the sixth group, Republicans, who

followed only multiple Republican candidates, but not Obama; and the
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seventh group, who followed Obama and at least one Republican
candidate, in some cases, all five candidates.

The author examined whether these groups followed others in the
groups or were followed by them. According to the results, as shown
in Figure 4, they were as often followed by someone in the network
as they followed, except for 3) onlyGingrichSet and 7)
onlyDiverse/Allset. Gingrich was accused of having many fake
followers (McArdle, 2011), which can be manufactured easily by
following others through programming, but cannot as easily have
others follow them. So it is understandable that Gingrich followers
have more in-network users to follow, also known as one-way friends,
than followers from the in-network. Those who follow all candidates
or multiple Republican candidates along with Obama seem to be not
followed by as many in-network Twitter users as they follow. These
people may tend to follow others at any opportunity. If so, they
would not get followers as easily. This tendency is shown a little bit
with Group 6, which follow multiple Republican candidates.

Any way, except for these two groups, the 180 users seem to follow
the pattern of the network model rather than the two-step flow model.

To find whether there are emerging leaders in a network pattern,
Twitter users' followers (others who follow Twitter users) and Twitter
users' friends (those Twitter users follow) were compared. A high
follower/friend ratio and a high number of posted tweets are a sign
of high influence.

Ideally this study should have analyzed the pattern of how each of
all Twitter users follows others in the in-network and is followed by
them. But to download all the followers and one-way friends of

approximately 30 million users was almost impossible for this study
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because of Twitter’s limitations on downloadable data. That's why this
study limited its examination to only the manageable 180 users when

it analyzed the following pattern among Twitter users in the network.

<Figure 4> The pattern of Twitter followers

Category
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characteristics of Twitter users. According to Table 1, the selected 180
users have been with Twitter a little more than two years on average;
posted 882 tweets by the time this study collected the data. They had
116 followers and 267 friends, the ratio of follower/friend of 0.44. But
a few among the followers in the network seem to have emerged as
opinion leaders. For example, among 30 Obama followers, three posted

plenty of tweets and more followers than friends. One person posted
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7,742 tweets, 233 followers and 140 friends. Another one posted 28,537
tweets, 5,164 followers and 4,690 friends. A third one posted 3,436
tweets, 560 followers and 444 friends.

In terms of the influence of Twitter users, measured by the number
of tweets, followers, the ratio of followers over friends, the people
who followed all the five candidates seemed to be the strongest,
followed by Obama followers. On the other hand, Gingrich followers
had kept their accounts for a long time, but their tweets and

followers, the ratio lagged behind other candidates' followers.?)

<Table 1> The characteristics of Twitter users

D?'\xit'\clglrth Tweets Followers Friends Folloewngr/Fri
account

Obama 709 1770 259 448 0.58
Paul 708 722 48 99 0.48
Gingrich 1164 71 16 74 0.22
Romney 565 558 59 126 0.47
Santorum 619 172 65 204 0.32
Republicans* 842 386 39 105 0.37
Diverse** 790 1553 122 460 0.27
All*** 676 1821 319 619 0.52
Average 759 882 116 267 0.43

Note: Republicans* means users following multiple Republican
candidates. Diverse** represents users who follow Obama and
other Republican candidate(s), not all. All*** represents users
who follow all candidates.

2) This study analyzed all tweets, not necessarily tweets on politics. Thus,
there is a big assumption that opinion leaders in general are more likely to
lead political discussions than otherwise.
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2. Message analysis — component

1) Tweet types and features: To find out how the politicians used
Twitter, this study analyzed all the tweets up to mid-March 2012, as
shown by the ending date of tweets (Refer to the fifth row of Table 2
below). Tweet count did not match the actual number of tweets
retrieved from each candidate’s Twitter profile page because it did not
reflect deleted tweets or it simply did not provide an accurate count
(“Twitter”; “I'm Missing”), especially with Gingrich, who was accused
of having many fake followers (McArdle, 2011). So the quantitative
analysis was done not based on the absolute numbers, but their ratios.

Obama, Paul, Gingrich, Romney, and Santorum sent out their regular
tweets one way to their followers in 88.5%, 93.9%, 72.5%, 98.0%, and
80.8% of times. In other times, they used Twitter to retweet others’
tweets or reply to them. This interactive method was adopted in the
order of Gingrich, Santorum, Obama, Paul and Romney (refer to item
7), 8) and 9) in the first column of Table 2). Only 2.0% of Romney’s
tweets interact with other Twitter users. This shows that Twitter was a
one-way communication tool between the presidential candidates and
their followers. Also political candidates began to make the move to
include multimedia, attaching visuals to text-based Twitter. Romney
attached visuals most frequently, using them in 15% of cases (refer to
item 13 in the table).

Hashtags and links to http web addresses were used more
frequently than visuals. In the case of Paul, he embedded hashtags in
tweets in 90.6% of tweets and links to http addresses in 73.7% of

tweets. Even though other candidates used far less than Paul, this
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suggests that politicians used a tweet as a hook to hashtags and http

links that would provide more detailed information for followers.

<Table 2> Various Ways of Using Twitter

Candidate Obama (%) Paul (%) Gingrich (%) Romney (%) | Santorum | (%) |Total 5| (%)
ID 813286 287413569 20713061 50055701 5837900

1) Setup date 3/5/07 4/24/11 2/12/09 6/23/09 7/20/09
2) starting date of Twitter | 5/1/07 8/23/11 7/27/10 7/9/09 7/25/09
3) Ending date of Twitter | 3/17/12 3/13/12 3/12/12 3/12/12 3/11/12
4) Tweet count on profile 2811 819 3230 827 1605
5) Total tweets retrieved 3158 879 1471 864 1751
6) Regular tweets 2796 88.5 825 93.9 1067 725 847 98.0 1415 80.8 6950 85.6
7) Retweets 308 9.8 a4 5.0 158 107 2 0.2 215 123 727 8.9
8) Replies & retweets 32 1.0 1 0.1 9 0.6 14 1.6 2 0.1 58 0.7
9) Relies 22 0.7 9 10 237 16.1 1 0.1 119 6.8 388 4.8
(total) 3158 879 1471 864 1751 8123
10) Link to photo 108 3.4 24 2.7 80 5.4 101 117 41 2.3 354 4.4
11) Link to video 138 4.4 25 2.8 20 14 4 0.5 28 16 215 2.6
12) Link to media* 0 0.0 3 0.3 7 0.5 25 2.9 2. 0.1 37 0.5
13) Link to visuals 246 7.8 52 5:5: 107 7.3 130 15.0 71 4.1 600 7.5
14) Hashtags 953 30.2 796 90.6 325 221 280 324 633 36.2 2987 36.8
15) Links to http address 2206 69.9 648 737 772 525 579 67.0 593 339 4798 591

Note. media* is a newish developer-focused project called Twitter
Cards. Read about it at https://dev.twitter.com/docs/ cards.

2) Content analysis of messages: The author content analyzed a random
sample of 500 tweets, 100 tweets from each of the five candidates.

Unlike the four Republican candidates, Obama always described his
performance directly rather than relying on others, as shown in items
A and B of Table 3. On the other hand, the ratio of relying on others
ranged between 32% and 46% for the Republic candidates. In the case
of expressing ideas, its outside-reliance ratio was 29% for Obama while
the ratio was between 43% and 76% for the Republican candidates
(refer to items C and D of Table 3). When Obama criticized his

opponents, he relied on others only 17% of the time, while his
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Republican counterparts more heavily relied on others - except for
Romney with 8.7%. When three categories are combined (performance,
ideas, and criticism), Obama relied on others in 17% of cases while his
counterparts' ratio varied between 34.7% and 53.7%. Among the three
categories, the criticism category accounted for only 7.9% for Obama,
while the ratio of criticism ranged between 11.0% and 26.1% (refer to
the last row in Table 3). As the president, Obama may not need to
rely on external sources to support his ideas. Also he did not feel to
criticize his rivals as much as the Republican candidates.

On the other hand, Obama focused on soliciting Twitter followers to
do more than read tweets, imploring them to attend a meeting, donate
money, participate in a petition, etc. (17%). Santorum showed the most
personal side by writing the largest number of tweets about his
personal matters or express thanks to others who supported him, his

party, or country.

<Table 3> Content analysis of tweets

(unit: %)
Category Paul Gmhgrlc Romne | Santor | Obam
y um a

A) Performance described 23 23 17 19 28
by self

B) Performance dfescrlbed 13 12 3 16 0
by other media

C) Ideas described by self 16 17 9 5 30

D) Ideas described by 16 13 15 16 12
others

E) Criticism of opponents 3 4 21 7 5
by self

F) Criticism of opponents 16 4 ) 4 1
by others

G) Solicitation 4 9 11 5 17

H) Thanks 3 8 9 14 5
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1) Personal side 1 9 6 13 1
J) Reminder 1 1
K) Miscellaneous 2 1

Total 100 100 100 100 100

Reliance on others(%)
=(B+D+F)/(B+D+F+A+C+E)

Criticism(%) =
(E+F)/(A+B+C+D+E+F)

48.9 39.7 34.7 53.7 17.1

26.1 11.0 31.9 16.4 7.9

V. Conclusion

The study’s findings seem to suggest that Twitter works as an echo
chamber rather than a forum where diverse opinions are competing
for the attention of users. So more education on how to use Twitter in
a smart way should be offered for people to nurture democracy.

People's communication pattern on Twitter suggests the network
model, in which Twitter users communicate with each other for
sharing information. As Berry (2003) estimated, about 10 percent of
Twitter users emerged as opinion leaders who tend to influence others
by posting numerous tweets and having more followers than friends.
This study found the same result: 3 out of 30 Obama followers had
the characteristics of opinion leaders.

Presidential candidates used Twitter mostly as a one-way channel
when they communicated with their followers. Politicians used a tweet
as a hook to hashtags and HTTP links that provided more detailed
information for followers. They made a move to include visuals, but

less than 8 percent of tweets took advantage of visual features.
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In terms of messages, President Obama and the Republican candidates
used Twitter to announce their performance and ideas and criticize their
opponents. The differences between them existed in information sources
for their tweets and the level of criticism. Republican candidates tended
to use external sources to promote themselves or criticize their
opponents, while Obama, as president, did not need to rely on external
sources as heavily as his Republican counterparts.

In the Internet era, people are capable of accessing an unlimited
amount of information and data. To secure the attention of voters,
politicians should maintain stable channels to their constituents through
the latter's subscription to the former's messages - like Twitter
updates. While his fellow candidates struggled, Obama succeeded by
embracing the power of social media and effectively using it.

However, while securing people's attention is one challenge, gaining
their support is a whole other obstacle. In the web 2.0 society, people
would reach out to not only political candidates, but also many others.
While people interact and cooperate in a network, they would run
into a person they can trust. If this person garners enough followers,
this individual will be influential and can persuade other followers. In
a networked society, an influential would emerge based on his or her
talents and efforts, like power bloggers.

As politicians become savvier in their use of the social media
channel, they may consider not only garnering more Twitter followers
but also winning the hearts of influentials. If politicians can't win their
hearts, then they may try to buy their hearts, as businesses have done.
The messenger is often more important than the message itself (Keller

& Berry, 2003).
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The Association of World Election Bodies and its

Advantages on South Korea

Hanbeom Jeong*

ABSTRACT

South Korea, who had overcome Korean War with the
assistance of the United Nations, has kept close relationships
with international organizations. Korea has led the process to
establish The Association of World Election Bodies (A-WEB),
whose aim is to spread democratic election systems in the
world, especially to the underdeveloped world. The
establishment of the A-WEB is a groundbreaking monument in
South Korean diplomatic history, which shows South Korea's
grown leadership to compromise diverse interests of many
countries. Inviting headquarters of IOs would bring about
diverse positive impacts in political, diplomatic, socioeconomic,
and cultural aspects. This research will find gains and
advantages we can achieve by attracting A-WEB to Korea. For
the purpose, 1 will compare the case of Hague, Netherlands.

Key Words: A-WEB, Inviting International Organizations, Democratic
Election System, International Leadership, Economic Gains

E39: 2016.09.25. AARL: 2016.09.27. AAFAFY: 2016.11.01.

* Korea National Defense University
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F0% A4 AIE AE Tik 5 54 A R SE9 704
FAE Hole AX I AElY FdE] &% ARl Ot w2 aF
o WEEE AUL e ouls, oRe Jigle] Axzl AW 4
of dhel mEAoR WEslL ek wgom X2 vidoldt. v,

3 ARRle] AAA Aes FEYEERRH A94ES €4 2 & A I
T3 QL] ghell tiRt WEETE A AL fEske 9T9ES 4
AN2E Ao e 9H oJEngE FEd wiE Adn. Fige
1) “--- Satisfaction of the survival needs, we hypothesized, leads to growing
em-phasis on nonphysiological or “Postmaterialist”’goals--".” (Inglehart 1997,

110)
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ABSTRACT

We explain how the class perception of the refugees that
they had back in North Korea affect their life satisfaction in
South Korea using two mechanisms, ie. freedom experience
effect and relative deprivation effect, which lead to opposite
predictions. Using the KOSSDA survey data (2010), we conduct
multivariate regressions to test the two effects. Our finding
lends strong and robust support for the freedom experience
effect support. The refugees who identify themselves as high
class back in North Korea tend to be more satisfied in South
Korea than the refugees who identify themselves as low class
in North Korea, controlling for the effects of the variables that
have been used in previous studies.
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ABSTRACT

Alliance is one of the most traditional and heavily studied concepts
in international relations. Yet, the alliance literature is still evolving. In
recent years, the alliance literature has become more systemic and
dynamic by incorporating network theory. Traditionally, alliance was
understood and analyzed as a state behavior. However, by
incorporating network theory—the so-called “network turn”—alliance
began to be conceived as a network structure. The network turn has
changed the emphasis of the literature, and the new framework is
more focused on associations among states. Furthermore, it captures
influences of the current alliance structure on future alliance choices,
an often overlooked factor in traditional alliance literature. This paper
analyzes this transition by cataloguing the ways in which scholars
defend their choice of network theory over a traditional approach, and
judges the utility of conceptualizing alliance in network-theoretic terms.
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I. Introduction

“Alliance” is one of the most traditional and heavily studied concepts
in international relations. Yet, the alliance literature is still evolving. In
recent years, contemporary works in the alliance literature has become
more systemic and dynamic by incorporating mnetwork theory.
Traditionally, alliance has been understood and analyzed as a state
behavior. In other words, the alliance literature put emphasis on
attributes of a state, and scholars developed a theory of which state
allies with whom. However, by incorporating network theory—the
so-called “network turn”’—alliance began to be conceptualized as a
network structure. The network turn has changed the emphasis of the
literature, with the new framework focused more on associations
among states. Furthermore, it captures how the current alliance
structure affects future alliance choices, which was frequently
overlooked in the traditional alliance literature.

This transition brings up several questions. Why did the network
turn take place? How does it differ from the traditional approach, and
how does it contribute to the alliance literature? This paper examines
the evolution of the alliance literature over time. Understanding the
network turn will facilitate a more comprehensive understanding of the
current alliance literature, and will help guide decisions on different
methodologies for studying alliance.

The paper analyzes ten articles on alliance, which can be grouped in
two parts based on conceptualization; the first approaches alliance as a
state behavior, the second as a network. Specifically, the paper

discusses traditional approaches of the alliance literature, catalogues the
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ways in which scholars in question defend their choice of network
theory over a traditional approach, and judges the utility of

conceptualizing alliance in network-theoretic terms.

II. Alliance as a State Behavior

An alliance is a “formal (or informal) commitment for security
cooperation between two or more states, intended to augment each
member’s power, security, and/or influence.”(Walt 2009, p.86). During
the 1980s and the 1990s, the alliance literature included some concepts
that could be translated into network terms, but the conceptualization
of alliance differed greatly from a network approach. Alliance was
generally perceived as dyadic state behavior instead of a system with
its own structure. This dyadic state behavior was often analyzed in the
context of power distribution, largely considered to be exogenous. In
addition, associations among states and evolution over time were little
studied because scholars were rather interested in particular attributes
of states and how they could affect alliance choice. These features led

to rather static than dynamic analysis.

1. Power and Alliance Formation

The debates in the 1980s, during which international politics were
still dominated by the rivalry between the United States and the
Soviet Union, revolved around the analysis of power distribution and
alliance formation. Here we examine Altfeld (1984), Snyder (1984) and

Walt (1985) pieces, which share two distinct commonalities in
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conceptualizing the formation of alliances exogenous structure and
static conceptions of structure. The exogenous structure means that a
structure is considered as given at the point of analysis, and that
states’ behavior under the structure do not influence the structure.
Consequently, this leads to an emphasis on the static conception of
structure—a structure that does not change.

These analyses consider the structure of world politics to be
exogenous. For instance, Snyder takes the structure—that is, either
multipolarity or bipolarity—as given. Walt does not directly link the
term structure to alliance formation, but analyzes state selection of
alliance partners in the context of the distribution of power, which
relates to structure. Neither does Altfeld refer to the structure directly,
but he investigates how a state’s power to provide security benefits
affects alliance formation, which ultimately pertains to the distribution
of power. In other word, they analyze how states behave under a
given structure.

These conceptions of structure are static rather than dynamic. To be
fair, both Snyder and Walt have some dynamic elements in their
arguments, but ultimately, they predicate their analyses on a static
view. According to Walt, alliance is a response to threats. By choosing
to balance against or bandwagon with a threatening power, states will
affect the balance of power, which is the structure of the international
community. However, what Walt aims to explain was not how the
balance of power will evolve over time, but who states will choose as
allies under a given configuration of power. Therefore, Walt’s analysis
is focused on the static side of the structure. Snyder also has some
dynamic elements in his story. For example, he contrasts how policy

solidarity could change over time both in multipolarity and bipolarity.
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However, the structure as an entire picture in his argument is stable

and does not change—in other words, it remains static.

2. Political Similarity and Alliance Choice

The focus of the debates during the 1990s moved to political
similarity as a factor for alliance choice. Following the collapse of the
Soviet Union, the number of democracies increased exponentially,
which resulted in a burgeoning literature of democratic peace theory
(Roger 2016). This trend also influenced the debates on alliance, and as
a result, scholars in the 1990s examined political similarities among
states. In this section we analyze Siverson and Emmons (1991), Simon
and Gartzke (1996), and Lai and Reiter (2000). Siverson and Emmons
set up a contentious literature with their finding that democracies are
disproportionately likely to make alliances (Siverson and Emmons
1991), and Simon and Gartzke and Lai and Reiter followed up the
debate. These studies share three attributes: focus on a particular
attribute of states, dyadic alliance, and static analysis.

The alliance literature in this period was discussed in the context of
particular attributes of a state—that is, regime type—and its effects on
alliance choice. Siverson and Emmons test directly the impact of joint
democracies on alliance choices. According to their findings,
democracies were biased toward allying with each other during the
period from 1946 to 1965. However, Simon and Gartzke push back
this conclusion and argue it was an artifact of the Cold War.
Furthermore, they contend that regimes of most types prefer to ally
with the political dissimilar, instead of similar, types because different

regime types bring different qualities to the alliance that can
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complement each other (Simon and Gartzke 1996). On the other hand,
Lai and Reiter also support Siverson and Emmons, but they address
two questions that examine how far the logic of political similarity can
be extended: whether democracies are especially likely to ally with
each other, and whether states of any common regime type especially
are likely to ally with each other.l) They report that states with similar
regime types are more likely to ally with each other after 1945,
although two democracies are not more likely to ally with each other
than two autocracies (Lai and Reiter 2000).

All three pieces investigated direct dyadic alliances. With respect to
alliances, they empirically test their hypotheses with data based on the
Correlates of War (COW) project. Since the COW data provide
information only on direct dyadic alliances, they are interested in
clarifying who identifies whom as “my friend” or “my enemy,” but
not in how states identify indirect relations such as “the enemy of my
friend” or “the friend of my friend.”

Their analyses are staticc much like the alliance literature in the
1980s. Although they test their hypotheses across space over time, their
analyses are inherently static, in that they examine ally choice at a
given point of time. In other words, they examine their hypotheses

over time because the numbers of democratic and autocratic regimes

1) Werner and Lemke (1997) reach a similar conclusion in a broader context.
Rather than confining the scope to a formal alliance, they study alignment
choices, which refer to the “decision to assist a disputant in an ongoing
dispute by delivering aid against a specific opponent.” They find that
institutional similarity—political and economic—positively affects alignment
decisions regardless of whether aligning countries are democratic or
autocratic. Suzanne Werner, and Douglas Lemke, 1997, “Opposites Do Not
Attract: The Impact of Domestic Institutions, Power, and Prior Commitments
on Alignment Choices,” International Studies Quarterly 41(3): 529-546.
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and dyadic alliances were changing, not because the underlying

mechanism of alliance choice or structure was evolving over time.

III. Alliance System as a Network

As seen in the previous section, international relations theory and
network theory have not been completely unrelated. Quite the
contrary, networks have long been a familiar feature of international
relations since network theory is the “science of interactions,” and
international relations theory studies interactions among actors.2) Even
though international relations scholars may not have adopted the
network approach per se, there were some network-theory-related
concepts floating around. For instance, political similarity/dissimilarity
(Siverson and Emmons, 1991; Simon and Gartzke, 1996; Lai and Reiter,
2000) is the concept that can be easily translated into
homophily/heterophily in network terms because homophily and
heterophily are the concepts that focus on the attributes of nodes and
how those attributes influence behaviors. In case of homophily, nodes
that share common characteristics are attracted to each other, whereas
in case of heterophily, nodes with different characteristics come
together. Another example is bandwagoning (Walt, 1985), which
pertains to preferential attachment. Preferential attachment indicates the
concept that a node that already has enough resources attracts even

more nodes than a node with few resources does. According to the

2) Traditionally, international relations theory has been a study of interactions
between states. However, as the role of non-state actors—both sub-state and
supra-state—grew more conspicuous and influential on the international
stage, international relations theory has started to incorporate non-state
actors as well.
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bandwagoning logic, states ally with states that already have great
power, so this readily can be translated into preferential attachment.
Although the traditional alliance literature included some
network-theoretic concepts, the literature evolved drastically in the late
2000s or the early 2010s with its adoption of network theory.3) How
did this affect the alliance literature? What were the substantive and

methodological changes that followed the network turn?

1. Conceptualizing Network: Actor, Process, and Structure

Prior to delving into the network turn of alliance, it is important to
understand what the term “network” refers to in network analysis.
Network is understood in three distinct notions: actor, process, and
structure (Kim 2008).

First, a network is an actor. A network as an actor is not an actor
whose substance is immutable; rather, it is a “meta-actor” with its
own mechanism of interactions with other nodes. Therefore, a network
as an actor has “power from the network,” meaning the more nodes a
network attracts, the more attractive and powerful the network is.
Second, a network is a process of how a node connects to another,
and how a node connects to a system and vice versa. In this context,
a network as a process has “power on the network.” For instance, a
network that bridges two disconnected networks enjoys unique power
as a broker on the network. Third, a network is a structure of how

nodes are connected and interacting. A set of nodes forming a

3) Lee et al. adopted network concepts to alliance analysis as early as 1994.
However, it appears they were early adopters, and the alliance literature in
general started to take network theory more seriously only after 2000.
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network maintains a certain pattern of interactions, and enables or
constrains the nodes in the network. Consequently, a network as a

structure has “power of the network.”

2. Characteristics of Network Approach in its Substance and
Methodology

Bearing in mind that a network can refer to an actor or a process
or a structure, this section briefly presents substantive and
methodological characteristics of network theory in the context of
alliance politics. This will enable improved understanding of how the
network turn redirected and contributed to the debate in alliance
literature. In addition, this also relates to the rationale behind the
adoption of network theory in alliance literature.

First, network theory conceives of structure as being endogenous,
constantly evolving according to states’ alliance choices. In other
words, network theory is about the structure of a network, how it
affects the actions of nodes in the network, and how they affect the
structure of network. The network approach defines structure as
“emergent properties of persistent patterns of relations among agents
that can define, enable, and constrain those agents,” (Hafner-Burton,
Kahler and Montgomery 2009) and as a result, structure or system in
network theory has endogenous effects. In addition, the network
approach puts a great deal of emphasis on structure and addresses
associations among nodes rather than attributes of a particular node.

Second, network theory entails methodological improvements.
Traditionally, the alliance literature has relied on regression analysis

not because it was an appropriate tool but because there were no
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empirical tools for testing and accounting for interdependent links.
However, with the development of network analysis, new frameworks
that allow for interdependencies are now available. As an example, the
statistical model known as exponential random graph model (ERGM)
formulated endogenous interdependence. It corrects biases in
coefficients that result from unmodeled dependencies in a way that
produces appropriate confidence intervals given the volume of data,
and explicitly models dependencies (Cranmer, Desmarais and

Menninga 2012).

3. Adoption of Network Theory and Alliance Evolution

In order to analyze the evolution of the debate on alliance since the
adoption of network theory, this section reviews the works of Lee et
al. (1994), Maoz et al. (2007), Warren (2010), and Cranmer et al. (2012).
The starting point of these recent works remains the same as the past
debates—formation of dyadic alliances based on voluntary state
behavior. This is because alliance structure ultimately can be broken
down into an individual dyadic alliance, regardless of the structure an
alliance forms as an entire system. However, they depart from the
starting point of the dyadic relationship and explore a broader
network. The four articles diverge in slightly different directions, but
the network turn converges on three points: triadic unit, endogenous
structure, and dynamic analysis.

The network turn expanded the perspective of alliance analysis from
dyadic to triadic, which captures indirect relations, transitivity, and

structural balance.#) In other words, they shed light on extra-dyadic

4) Indirect relations refer to relations mediated by direct relations. Direct
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network effects in triads of states, but not necessarily in an identical
way. Lee et al. were one of the first teams to adopt network concepts,
and they formulate four triadic interaction: the friend of my friend is
my friend; the friend of my enemy is my enemy; the enemy of my
enemy is my friend; and the enemy of my friend is my enemy (Lee,
Muncaster and Zinnes 1994). Maoz et al. examine indirect relations
and measured structural balance and transitivity with social network
methodology (Maoz and Terris 2007). Warren wuses a stochastic
actor-oriented model, which assumes that changes in a network are
driven by the decisions of agents, and conceptualizes international
structure of alliance ties as a continuously evolving network. Cranmer
et al. emphasizes a synergy effect generated by triadic closure, and
examines whether the potential for triadic closure would make

alliances more appealing to prospective allies.5 Each article relies on a

relations are my friend/enemy, and indirect relations are the enemy/friend
of my friend/enemy. Transitivity refers to the extent to which the relation
that relates two nodes in a network that are connected by another node is
transitive. Perfect transitivity implies that, if x is connected to y, and y is
connected to z, then x is connected to z as well. Structural im/balance, in a
triad, is assessed by determining whether dyadic relations in a triad are
positive or negative—positive for friendship relations and negative for enmity
relations. Multiply the positive and negative sings of each link in a triad,
and if the result is positive, it is balanced, and imbalanced if negative. Zeev
Maoz, Lesley G. Terris, Ranan D. Kuperman, and Ilan Talmud, 2007, “What
is the Enemy of My Enemy? Causes and Consequences of Imbalanced
International Relations, 1816-2001” Journal of Politics 69(1): 100-115; S.C. Lee,
R.G. Muncaster, and D.A. Zinnes, 1994, “’The Friend of My Friend is My
Enemy’: Modeling Triadic Internation Relationships,” Synthese 100: 333-358.

5) “A triadic closure—a condition where three states are all allied to each
other—produces a synergy effect among the member states such that the
utility derived by each is more than the sum of their dyadic connections.”
Skyler J. Cranmer, Bruce A. Desmarais, and Justin H. Kirkland, 2012,
“Toward a Network Theory of Alliance Formation,” International Interactions
38: 295-324.
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different framework to analyze triadic alliances, but they share the
same bottom line - alliance decisions are not formulated in isolated
dyadic bubbles, but are interdependent on other alliance decisions
across dyadic boundaries.

This leads to the second similarity. The network turn allows
consideration of endogenous effects of structure. As mentioned in the
previous section, network theory studies the structure of observed
networks that reflect cumulative consequences of multiple decisions
regarding a link-formation. In the context of alliance, states consider
the alliance relationship of other states when deciding whether and
how to adjust their alliance portfolios, so the structure of the alliance
network affects state behavior of alliance choices. In turn, alliance
choices also affect the entire alliance network, and in this process, the
alliance network keeps evolving.

Related to the previous point, the network approach confers
dynamism to structure. Specifically, the network turn of the alliance
literature examines an evolution of alliance networks such as the
direction and determinants of the evolution. In fact, network relations
are inherently dynamic, as nodes are constantly interacting with other

nodes with which they are directly and/or indirectly connected.

IV. Conclusion

In the alliance literature, the effects of alliance network structure,
which shed light on interactions between state-actors and a system,
have been overshadowed by systems’ effects on state behaviors, which
study how a system mandates state behaviors. However, by adopting

the network approach, network theory redirects and reframes the
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debates in the alliance literature in a way that emphasizes structure in
three ways: endogenous effect, interaction between structure and actors,
and dynamics of structural evolution. However, these ideas themselves
are not completely new to the alliance theory. Rather, until recently,
scholars were unable to empirically examine these dynamics due to the
lack of appropriate methodological apparatus. In the late 2000s, the
network approach has incorporated interdependencies and structural
endogenous effects with a more advanced methodology, which is likely
the primary reason for the network turn since the late 2000s.
Furthermore, this would also be the reason for the delay until the late
2000s of an empirical test for Lee et al.’s mathematical triadic model.
With its advanced methodology, the network approach offers the
discipline of international relations many new avenues of investigation
that can result in new insights. Indeed, numerous underlying ideas of
network analysis match very closely the basic characteristics of
international  relations. = Actors—both  state and non-state—are
fundamentally interdependent in international relations. In addition,
there is constant interaction between actors and structure, wherein
actors’ choices transform structure in non-trivial ways and structure
constrains and enables actors’ choices (Maoz 2012a). Accordingly, to
the extent there is clear evidence of meaningful interdependence in a
system, network analysis is well suited for the study of international
relations, and contributes significantly to the alliance literature in

particular.
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<Appendix> Comparing a Traditional Approach and a Network

Approach to Alliance Studies

Traditional Approach

Network Approach

Node-based

Network-based

Dyadic state behavior

System with its own structure

Emphasis on attributes of states

Emphasis on association among
states

Endogenous system

Exogenous (emerging) System

Static analysis

Dynamic analysis
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ABSTRACT

This article introduces Exponential Random Graph Modeling
(ERGM), a method for statistical inference in social network analysis.
The following aspects of the method are explained in the text: 1)
objectives, 2) model specification, 3) estimation, and 4) interpretation of
the estimation results. I also provide an example case with empirical
network data and show how ERGMs can be applied to examine real
network data.
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I. Introduction

As information and communication technologies (ICTs) develop, our
relationships with others and the way in which we communicate and
interact with others become more complex. Especially due to the
development and popularity of social network sites such as Facebook
and Twitter, individuals tend to form more diverse relationships with
others including both acquaintances and strangers on the Web. Such
online relationships can complement offline relationships, on the other
hand, sometimes online relationships can replace offline relationships
(Ellison et al., 2007).

The methods of social network analysis can be used to investigate
such complex relationships and interactions among individuals
especially who belong to the same social network, which can be
interpreted as a group that consists of a number of individuals. For
example, the following questions (but not limited to) can be answered
with social network analysis techniques.

With whom an individual develops relationships?, How does an
individual interact with others via such relationships?, How do such
relationship and interactions influence an individual’s behavior and
psychology?, and Who is central or an opinion leader in the social
network to which an individual belongs?

According to its objectives, a social network analysis technique can
be categorized as either a descriptive (or exploratory) technique or a
statistical inference technique. Descriptive social network analysis
techniques are mainly used to examine relationships and interactions

within a social network in a descriptive way. For example, the number
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of ties and the types of ties that each person has, the centrality of
each person in the network, and the density of a social network,
which are called ‘network statistics,” can be examined with descriptive
social network analysis techniques. One of the main limitations of
descriptive social network analysis methods is that it is difficult to
analyze characteristics of a social network in a relative sense. For
example, if a particular social network has a certain number of ties
among the members, with descriptive methods we can hardly
determine the degree to which the members of the network are
densely connected. In order to decide the degree to which the
members of the network are densely connected, we should be able to
compare the network with another network of the same size that is
randomly generated.

If we can compare a particular characteristic of a social network
with another network that possesses a similar, then it is possible for
us to say whether the observed network is more or less likely to have
the characteristic compared to the network. If the network, with which
we compare, is assumed to have been generated by chance, then by
comparing our network with the randomly generated network, we can
determine the degree to which our network has the characteristic of
interest compared to a network generated by chance.

Exponential random graph modeling (ERGM) is a statistical inference
method used for social network analysis. With ERGM we can compare
particular characteristics of a social network with another network that
is randomly generated. It is used to test whether a social network
possesses a specific relational characteristic(s) with statistical significance.
In this article, we introduce the basics of ERGM and describe how

ERGM can be practically used with empirical data.
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The relational characteristics of a social network that can be
examined with ERGM can be divided into structural characteristics and
behavioral characteristics. Structural characteristics are about the
characteristics of the network structure, that is, how members of the
network are connected. For example, whether ties among members are
reciprocated (i.e., reciprocity), and how many ties are in the network
(i.e., density). On the other hand, behavioral characteristics about how
members’ behavioral attributes are associated with tie formation in
among the members, for example, whether there are more ties between
members who share similar behavioral or socio-demographical attributes
(i.e., homophily).

The main target audience of this article is readers who are interested
in social network analysis, but not familiar with ERGM. Readers, who
are familiar with ERGM, can refer to a book by Lusher et al. (2012)
that provides more detailed explanations of ERGM.

This paper is organized as follows. Section 2 provides a brief
introduction to ERGM. Section 3 describes model specification and
estimation of the model. Section 4 shows how to analyze social network
data with ERGM using example data. Section 5 reviews prior studies of

social network analysis that used ERGM.

II. What is exponential random graph modeling?

The main purpose of ERGM is to examine how a relational
characteristic has influenced the formation of ties within a social
network. In other words, ERGM can be used to understand the

underlying processes that have led to the observed structure of a
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social network. For example, with ERGM it is possible to examine
whether the observed structure of a social network is due to a
particular process such as homophily or reciprocity.

ERGM is similar to a logistic regression model in the sense that the
dependent variable of an ERGM can be regarded as a binary variable
that represents whether there is a tie between a pair of certain members
of the network. In logistic regression, we are mainly interested in
examining how the probability of the dependent variable taking value 1
is influenced by (or associated with) the independent variables (or
predictors) incorporated in the model. The independent variables
included in ERGM are those that are expected to influence the
probability that there is a tie (or relationship) between a pair of certain
individuals in the network of interest. In the ERGM context, these
independent variables are sometimes called ‘network configurations.” In
other words, network configurations are represented in a model as
independent variables of the model and the magnitudes of their
influences are represented with the values of the parameters of the
corresponding independent variables. Moreover, similar to logistic
regression, the statistical significance of a coefficient of an independent
variable can be tested with the p-value for the coefficient.

If a researcher wants to examine what factors have influenced the
tie formation in a particular social network, say Network A, and the
researcher considers ‘reciprocity’” and ‘gender’ homophily as important

factors, then the researcher can have a model as follows:

Pr(yij:1|X):ﬁ0+/81Xl+ﬁ2X2 (1)
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where yj is the variable representing whether there is a tie between
member i and j, and it takes value of 1 if there is a tie otherwise 0.
X1 is the number of reciprocated ties in the network and X, is the
number of ties between members of the same gender.

If the estimate of B is positive and statistically significant, then we
can say that Xy positively influences the probability of a tie between
certain two members in the network and the effect is statistically
significant. This also indicates that the network is likely to have the
characteristic represented by Xy more than by chance. For example, we
have a reciprocity configuration in our model and the coefficient of
the reciprocity configuration is positive and statistically significant, then
it means that there are more reciprocated ties in the observed network
than in a randomly generated network and the difference is
statistically significant with the effects of other configurations held
constant.

But different from a logistic regression, we cannot estimate the
parameters in Equation (1) with maximum likelihood estimation (MLE).
This is mainly because the assumption that the values of the dependent
variable are independent is violated in social network analysis. That is,
the probability of a tie between particular two members in a social
network is influenced by the presence of other ties in the network. For
example, the probability of a tie with members 1 and 2 is likely to be
influenced by whether there is a tie between members 2 and 3, and
between members 1 and 3. If members 2 and 3 are friends and
members 1 and 3 are friends, then it is more likely that members 1
and 2 are also friends. Because of these interdependences between ties,
in ERGM, parameters are estimated using simulation, for example,

Markov Chain Monte Carlo (MCMC) simulation.
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Similar to what we do for logistic regression, we specify an ERGM
and estimate the parameters of the model using data from the
observed network. These estimates of the parameters are used to make
inference about the observed network, that is what configurations or
independent variables are important in explaining the structure of the
observed network.

An ERGM should be constructed based on theories. That is, a
researcher should consider the theories that can explain why the
relational characteristics of the observed social network are present.
The factors (i.e., network configurations) considered in those theories
should be incorporated in the model the researcher is developing
(Lusher et al, 2012). According to Monge and Contractor (2003),
multiple theories should be considered when examining a social
network with ERGM because there can be several factors suggested by
multiple theories that have influenced the formation of ties within the

social network simultaneously.

III. Model

In this section, we explain the mathematical form of an ERGM and
how parameters of a model are estimated using simulation techniques.
We start with a logistic regression model with which readers might be
more familiar. The following equation is a general logistic regression

model.

P(Y=1|X) = exp{BX}/(1+exp{BX]}),
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where Y is the dependent variable of interest, X is a vector of
independent variables of interest, and A is a vector of parameters for
the independent variables. In a logistic model, the dependent variable
is a binary variable that takes values of 0 or 1. Examples of such
binary variables include whether an individual has a particular disease,
whether a treatment is effective or not, and whether it rains or not. In
a logistic regression, the dependent variable is about whether the
entity (e.g., individuals) examined has a particular attribute (e.g.,
disease).

In ERGM, we are interested in predicting whether there is a tie
between two nodes say i and j. Thus, in the logistic regression

perspective, we are interested in predicting
P(X; =18, 2),

where B is the vector of parameters and Z is the vector of
independent variables or network configurations of interest.
Similar to a logistic regression, we have a logit (i.e., log-odds) as

follows
logit { P(X;; = 118,2)} = log{ P(X,; =118, 2)/ P(X,; = 018, 2)} = BZ. (2)

As mentioned in the preceding section, the most important difference
between a logistic regression model and an ERGM is the assumption
about the independence of the values of the dependent variable. That
is, in a logistic regression, it is assumed that the values of the
dependent variable are independent. A value of the dependent variable

for a person does not influence the value of the dependent variable
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for another person. In an ERGM, however, this independence
assumption is not held. In an ERGM, we assume that the values of
the dependent variable, which represent the existence of a tie between
a pair of members, are dependent. This indicates that the existence of
a tie between two members say i and j is influenced by the existence
of ties between other members in the network. In order to take this
into account, we use a conditional probability. That is, whether there
exists a tie between members i and j (whether Xj = 1) is conditional
on the ties that exist in the network, which is denoted as X-j Thus,

the log-odds in Equation (2) becomes
10g{P(X,¢j = 1|X_ ij — T—ij ﬁa Z)/P(X” = 0|X_ ij — T—ij ﬁv Z)}

which is equal to

ZJ p (x) is called a ‘change statistic’ in kg independent variable or
configuration (Koskinen & Daraganova, 2012). Z; ¢ (x) is the change in
the value of ku configuration when the network changes from X-; =
x- and Xj = 0 to X+ = x5 and Xz = 1. For example, if Zy is the
number of edges in the network, then the value of Z,J () will be 1,
and if Zy is the number of triangles in the network and when Xj, =
Xn =1, ZZJ; » (x) will be at least 1.

In an ERGM, it is assumed that there is dependence between ties.
There can be different types of dependence. Examples are Bernoulli,

Dyad-dependent type, Markov Dependence, Realization-Dependent
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models. For more details, please refer to Koskinen and Daraganova

(2012).

Estimation of parameters

In order to test whether a configuration (i.e, an independent
variable) plays an important role in explaining the observed structure
of a network, we need to estimate the parameters of the configurations
of interest. In ERGM, simulations are used to estimate the values of
parameters.

By simulation, we find the values of the parameters that maximize
the probability of the observed network. In this sense, the estimation
method is a type of maximum likelihood estimation. But different from
the maximum likelihood estimation methods used for logistic
regression models, we do not solve the likelihood function analytically.
Because of the dependence between the values of dependent variable
in ERGM (i.e.,, dependence between ties), the parameters of an ERGM
cannot be solved analytically. We need to use simulation techniques.
One of the popular simulation techniques is the Markov Chain Monte
Carlo (MCMC) simulation.

For the simulation, we first choose some initial values of the
parameters. With the given parameter values, we start the MCMC
simulation. A realization of a network is an updated version of a prior
realization of the network. In order to obtain the next realization of
the network, we randomly choose a pair of members of the network
and if there is a tie between the members, the tie will be removed,
otherwise a tie will be formed between the members. Afterwards, the

probability of the realization of the network is compared to the
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probability of the prior realization of the network. If the former is
larger than the latter, then the network will be updated accordingly,
otherwise the prior realization of the network will be remained. The
simulation continues, until the simulation has converged. Finally, we
can have a distribution of graphs for the given parameter values. Once
we have a distribution from the simulation, we need to figure out
where the observed network is located. We need to change the values
of the parameters and do simulation again until we find a distribution
of which the observed network is located in the center. We choose the
values of the parameters that locate the observed network in the

center of the distribution.

Statistical inference

In order to test whether the coefficient of a configuration is
statistically significantly different from 0, we calculate the value of a

Wald test. For kth coefficient, we calculate the below

(ﬂAk—O)/se(ﬁAk,).

Similar to traditional regressions, if the corresponding p-value is
smaller than 0.05, we can say that the coefficient is statistically

significant at a 0.05 significance level.

Goodness of Fit

‘Goodness of fit' of an ERGM is tested by examining how well the

fitted model explains the features of the observed network that were
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not included in the model. The assumption of this process is that if
the model fits well the observed network, then it should explain well
other characteristics of the network that were not included in the
model (Koskinen & Daraganova, 2012). If the value of a feature of the
observed network which has been generated by the fitted model is not
much different from the observed value of the feature in the network,
then we can say that the ‘goodness of fit' of the model is okay. The
statistical significance of the difference between the value of a feature
predicted by the fitted model, say Si, and the value of the feature
observed in the model, say Sy, is calculated with the following

equation:
(Sk_obs - E)/SD(S,{L

where S, is the mean of the values of the feature generated by
simulation and SD(S,) is the standard deviation of those values. If, in

general, the value of this ratio is larger than 2, then it is likely that
the “goodness of fit" of the model is bad.

IV. Example of ERGM: Analysis of international

movie co-productions

In this section, we attempt to help readers understand how they can
apply ERGMs to real social network data by presenting an example
case of applying ERGMs to real social network data. Here, we present
an example case of an ERGM analysis with social network data of

international movie co-production relations among countries in the
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world. The network data used in this example consist of 234 countries
in the world and their movie co-production relationships in 2010. In
this network, a tie between two countries is present if the two
countries collaborated to produce a movie in 2010, ie., if they
co-produced a movie. The movie co-production data were obtained
from IMDb.coml). In this example, our primary focus is on whether
homophily characteristics are important factors that influence the
formation of movie co-production relationships between countries in
the world. We hypothesized that the following homophies are

important.

- Cultural homophily, which are measured with language homophily
and regional homophily
- Economic homophily, which are measured by whether a country is

a member of OECD

Cultural homophily indicates that there are more ties, i.e,
co-productions, among countries that have similar cultural
characteristics, which is suggested by previous studies of movies (e.g.,
Hoskins et al, 1998). On the other hand, economic homophily
indicates that there are more ties among countries that have similar
economic status.

We thought that the details of the entire process of the ERGM
analysis should be explained in order for readers to try ERGM

1) It should be noted that the data from imdb.com might not be complete.
That is, it is likely that the data do not contain the entire information about
all the co-productions between counties in 2010. Despite this limitation of
the data, we use the data in order to present an example of how an ERGM
can be used with empirical data.
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analyses for themselves. The entire process of the ERGM analysis is as
follows: 1) Data collection, 2) Construction of social network data for
ERGM analysis, 3) Model specification, 4) Estimation of the model
parameters using the observed network data, and 5) Interpretation of

the results.

Data collection

In order to construct social network data for international movie
co-production among countries, we first collected a list of movies
released in 2010 from IMDb.com. Along with the list of movies, we
also collected information about the countries who produced each
movie. The data was collected using a web scraping program written
in Python. According to IMDb.com, there were 3,328 movies that were

co-produced by more than one country in 2010.

Construction of the co-production social network

Among all the movies released in 2010, movies produced by single
country were removed from our dataset. For the remained movies, we
constructed a social network among countries, where a tie was formed
when two countries co-produced a movie in 2010. Figure 1 shows a
social network among OECD countries, which is a part of the entire
social network that we constructed. The size of each node represents
the number of other countries with the country co-produced movies,
and the width of a tie reflects the number of co-productions between

two countries.
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<Figure 1> Network of OECD countries in 2010

# of ties =

356, density = .633

Model specification

As mentioned above, our main focus was on examining whether

there exist
relationships
homophilies.

characteristic,

two homophily characteristics in the co-production
among countries, which were cultural and economic
First, in order to examine the cultural homophily

we looked at two different types of ties: 1) ties among

countries who use the same official language, and 2) ties among

countries who are located in the same region (or continent). Previous

studies of cultural similarities among countries show that countries

who use the

same official language and are in the same continent

tend to more cultural similarities (Hoskins et al., 1998). Second, for
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economic homophily, we distinguished countries by whether or not
they belong to OECD.

In this example, in order to test whether the co-production network
has the cultural homophily or economic homophily characteristic, we
developed three different models and test them separately. The three

models are as follows:

Model 1-1 for testing cultural homophily with the number of

ties among countries with the same official language

Probability of the observed network = exp(Fo + Fredges + Falanguage homophily)/c,

where ‘language homophily’ is the number of ties among
countries with the same official language and ¢ is a

standardization parameter.

Model 1-2 for testing cultural homophily with the number of

ties among countries in the same continent

Probability of the observed network = exp(Ado + A1edges + Aaregion homophily)/c,

where ‘region homophily’ is the number of ties among countries
that are located in the same continent and c¢ is a standardization

parameter.

Model 2 for testing economic homophily with the number of

ties among countries who belong to OECD
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Probability of the observed network = exp(uo + wedges + 11,OECD homophily)/c,

where ‘OECD homophily” is the number of ties among countries

who belong to OECD and c is a standardization parameter

Estimation of the parameters

In order to estimate the parameters in the above models, we used
the ‘ergm’ package provided in R, a statistical programming language.
For example, to examine whether there is the language homophily

characteristic in the network, we use the following script in R.

model.01 <« ergm(co_production ~edges + nodematch('Language',diff=T)),

where co_production is the network data for co-production relations
among countries.

For more detailed information about how to implement the ‘ergm’
package in R, please reference The Statnet Development Team (2016)
and Handcock et al. (2016).

Interpretation of the results

Results of Model 1-1

By estimating Model 1-1 with the ‘ergm’ package we obtained the
following results. To save the space, we only report the coefficients of

the variable of interest.
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<Table 1-1> Results of ERGM for language homophily

Languages Estimate SE p-value
Arabic -0.02341 0.36422 0.949
Dutch 2.18074 1.22506 0.075
English 0.13952 0.14853 0.348
French 0.21362 0.32826 0.515

German 2.87388 0.81696 0.000
Korean 13.43991 119.4681 0.910
Portuguese 0.75362 0.61163 0.218
Spanish -0.28007 0.38693 0.469

According to results in Table 1-1, we can say that there exist the
language homophily characteristic only among the countries that use
Dutch and German. Most of the coefficient values are positive, albeit
statistically insignificant, except for the variables of Arabic and
Spanish. These results indicate that there are fewer ties among the

countries that use Arabic and Spanish than by chance.

Results of Model 1-2

For Model 1-2, we obtained results as in Table 1-2.
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<Table 1-2> Results of ERGM for region homophily

Regions Estimate SE p-value
Caribbean Islands -0.7344 0.41395 0.076
Central America 14.63832 196.9677 0.941

East Asia 2.63695 0.38822 0.000
Europe 2.18539 0.0781 0.000
Mesoamerica 2.22497 0.69078 0.001
North Africa 2.37912 0.54862 0.000
North America 14.63832 196.9677 0.941
North Asia 2.37912 0.86659 0.006
Oceania -1.2318 0.50434 0.015
South America 1.98825 0.24325 0.000
South East Asia 1.73727 0.22696 0.000
Sub-Saharan Africa -0.99451 0.23349 0.000
West Central Asia 0.78649 0.19418 0.000

We find that the network presents a strong regional homophily
except for the countries in Caribbean Islands, Oceania, and
Sub-Saharan Africa. We need to pay an extra attention when
interpreting the results for the countries in Central America and North
America. The coefficient values of the variables are much larger than
the coefficient variables of other variables, but they have much larger
p-values than other estimates. The large p-values are resulted from the
small number of countries in those regions. There are only two
countries in Central America (Cost Rica and Mexico) and North
America (Canada and the U.S.). On the other hand, the large
coefficient values indicate that a strong homophily characteristic among

those countries in the regions.
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Results of Model 2

For Model 2, which is about the ‘OECD’ homophily, we have results
as in Table 2.

<Table 2> Results of ERGM for economic homophily

Variable Estimate SE p-value
Non-OECD -2.07293 0.06594 0.000
OECD 2.63923 0.10218 0.000

The results for the OECD (economic) homophily are reported in
Table 2. The results indicate that there are more connections among
the OECD countries and fewer connections among the non-OECD
countries than by chance given the number of countries, which means
that international co-production more frequently occurs among OECD

countries, in general.

V. Studies of social networks using ERGM

In this section, we introduce studies of social networks that used
ERGM. Valente et al. (2009) examined whether there are more
relational ties between adolescents who are overweight and found that
an overweight adolescent is twice more likely to have friends who are
also overweight. Hazir (2013) examined educational homophily
characteristics among organizations with respect to their R&D
collaborations and found that there are more ties among higher

education institutes. Huang et al. (2009) investigated how offline
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proximity and socio-demographic homophily characteristics such as
gender, age, and game experience influence the formation of ties
among online game players. The authors found that offline proximity
also influences the tie formation among game players online. Valente
et al. (2013) examined whether there tend to be more ties among
students who smoke and drink and found significant homophily
characteristics. Gerber et al. (2013) examined the characteristics of
political homophily among government officials and found that there
are more collaborations among officials who share similar political
perspectives. Van Rossem and Vlegels (2009) examined ethnic
homophily among students in Flemish high schools. The authors found
a strong ethnic homophily characteristics among the students.

There are a small number of studies that examined social networks
with ERGM in Korean contexts. For example, Lee and Youm (2009)
studied co-sponsorship networks in the legislative process in South
Korea with respect health issues. Similar to Lee and Youm (2009), Seo
et al. (2014) also examined co-sponsorship networks in the legislative
process in South Korea. But they examined the networks with respect

to sexual assault issues.

VI. Conclusion

In this article, we have attempted to provide an introduction to
exponential random graph models that can be used for statistical
inference in social network analysis. We explained what an ERGM is,
what an ERGM is used for, how an ERGM can be specified, and how

parameters of an ERGM are estimated. We also reviewed previous
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studies that used ERGM to examine relational characteristics in a social
network.

Because of the fact that ERGM estimates the magnitude of a
network configuration with statistical significance, a researcher can test
hypotheses relevant to formation of ties in a social network, which is
a big advantage over mere descriptive social network analysis
techniques. But it also should be emphasized that descriptive metrics
of a social network are also important information that can be used to
better understand the social network. Thus, those descriptive analyses
should be carried out along with statistical inference techniques such
as ERGM.

ERGM is mainly used with cross-sectional data. But sometimes we
also interested in how a social network changes over time. For this,
we need to use other methods. One of those methods is SIENA, which
stands for Simulation Investigation for Empirical Network Analysis.
With SIENA, we can examine who forms a tie with whom at first and
how an individual’s behavior or attitude is influenced by others who
are connected to the person over time. For more details of SIENA,

please refer to a webpage maintained by Snijders (2016).
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